
János Dani
CEU / OSA helpdesk

GitHub: /danijanos

Instagram: /dan1jan1

Using Airflow as an
Orchestrator for
microservices
Archiving at OSA

What are microservices?

1/13

● Architectural style

● Structures an application as a collection of services

● Highly maintainable and testable

● Loosely coupled

● Independently deployable

● Communication through transactions

● Could be scaled separately and independently

Workflow tools

● There is quite a lot...

● They are for various purposes

● Why is one better or favourable than the

other?

2/13

The process of choosing

● Uses workflow as a broader sense

● Good (visual) monitoring

○ Alerts

○ Email notification

○ Charts

○ Error checking

● Has a good documentation / community

behind

● [Open source]

3/13

About Airflow

Started at Airbnb in October 2014

Written in Python

Becoming an Apache Incubator project in March 2016

Top-Level Software Foundation project in January 2019.

source:
● https://en.wikipedia.org/wiki/Apache_Airflow
● https://airflow.apache.org/

4/13

5/13

The scheduler

● Executes (triggers) tasks on an array of workers

● Monitors all tasks

● Executor types:

○ Sequential executor

○ Local

○ Celery (to scale tasks on different worker nodes)

source:

● https://airflow.apache.org/docs/stable/scheduler.html

6/13

Basic conceptual building blocks

● Dags (Pipelines)

● Operators

○ Tasks

7/13

task n

task m+3start

task 1

task 2

task 3

task m

task m+1

task m+2

end

.

.

.
.
.
.

DAGS

osa_av_workflow = DAG(

dag_id='osa-av-workflow',

description='Main DAG for the AV preservation workflow',

default_args=default_args,

schedule_interval=None,

catchup=False)

default_args = {

'owner': 'airflow',

'depends_on_past': False,

'start_date': datetime(2018, 1, 1),

'email': ['bonej@ceu.edu', 'danij@ceu.edu'],

'email_on_failure': True,

'email_on_retry': False,

'retries': 1,

'retry_delay': timedelta(minutes=5)

}

Dag

● Holds a series of tasks connected

with dependencies

● Made for avoiding cyclical

dependencies between tasks

● Dags are identified by their IDs

8/13

Operators

● BashOperator - executes a bash command

● PythonOperator - calls a Python function

● EmailOperator - sends an email

● SimpleHttpOperator - sends an HTTP request

● BranchOperator

● …

● Write your our own operators!

source: https://airflow.apache.org/concepts.html#operators

9/13

create_master_checksums = PythonOperator(

task_id='create_master_checksums',

python_callable=create_checksums,

dag=osa_av_workflow,

op_kwargs={

'directory': 'Preservation',

'file_extension': MASTER_FILE_EXTENSION

})

Tasks

● Tasks are instantiated operators.

● Connected with dependencies

● Can be parallelized

op1.dag = dag
op1.set_downstream(op2)
is the same as:
dag >> op1 >> op2

op1 >> op2
is the same as:
op1.set_downstream(op2)

op2 << op1
is the same as:
op2.set_upstream(op1)

10/13

Statuses

success

running

failed

skipped

retry

queued

no status

11/13

Airflow Web UI - Gantt chart

12/13

Airflow Web UI - Logs

13/13

Links

● https://airflow.apache.org/

● https://hub.docker.com/r/apache/airflow

● http://michal.karzynski.pl/blog/2017/03/19/developing-workflows-with-

apache-airflow/

